Efficient convolution with the Newton potential in d dimensions

نویسنده

  • Wolfgang Hackbusch
چکیده

The paper is concerned with the evaluation of the convolution integral R R d 1 x−y f (y)dy in d dimensions (usually d = 3), when f is given as piecewise polynomial of possibly large degree, i.e., f may be considered as an hp-finite element function. The underlying grid is locally refined using various levels of dyadically organised grids. The result of the convolution is approximated in the same kind of mesh. If f is given in tensor product form, the d-dimensional convolution can be reduced to one-dimensional convolutions. Although the details are given for the kernel 1/ x , the basis techniques can be generalised to homogeneous kernels, e.g., the fundamential solution const·x 2−d of the d-dimensional Poisson equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity

We consider two operations in the QTT format: composition of a multilevel Toeplitz matrix generated by a given multidimensional vector and convolution of two given multidimensional vectors. We show that low-rank QTT structure of the input is preserved in the output and propose efficient algorithms for these operations in the QTT format. For a d-dimensional 2n× . . .×2n-vector x given in a QTT r...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

A new method for 3-D magnetic data inversion with physical bound

Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a n...

متن کامل

An efficient improvement of the Newton method for solving nonconvex optimization problems

‎Newton method is one of the most famous numerical methods among the line search‎ ‎methods to minimize functions. ‎It is well known that the search direction and step length play important roles ‎in this class of methods to solve optimization problems. ‎In this investigation‎, ‎a new modification of the Newton method to solve ‎unconstrained optimization problems is presented‎. ‎The significant ...

متن کامل

Fast Multidimensional Convolution in Low-rank Formats via Cross Approximation

We propose new cross-conv algorithm for approximate computation of convolution in different low-rank tensor formats (tensor train, Tucker, Hierarchical Tucker). It has better complexity with respect to the tensor rank than previous approaches. The new algorithm has a high potential impact in different applications. The key idea is based on applying cross approximation in the “frequency domain”,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2008